Direct Parallel Computations of Second-Order Search Directions for Model Predictive Control
نویسندگان
چکیده
منابع مشابه
Direct Model-Predictive Control
Due to simplicity and convenience, Model Predictive Control, which consists in optimizing future decisions based on a pessimistic deterministic forecast of the random processes, is one of the main tools for stochastic control. Yet, it suffers from a large computation time, unless the tactical horizon (i.e. the number of future time steps included in the optimization) is strongly reduced, and la...
متن کاملImproved Optimization Process for Nonlinear Model Predictive Control of PMSM
Model-based predictive control (MPC) is one of the most efficient techniques that is widely used in industrial applications. In such controllers, increasing the prediction horizon results in better selection of the optimal control signal sequence. On the other hand, increasing the prediction horizon increase the computational time of the optimization process which make it impossible to be imple...
متن کاملSecond-Order Convergence of Mesh-Adaptive Direct Search
Abstract: A previous analysis of second-order behavior of pattern search algorithms for unconstrained and linearly constrained minimization is extended to the more general class of mesh adaptive direct search (MADS) algorithms for general constrained optimization. Because of the ability of MADS to generate an asymptotically dense set of search directions, we are able to establish reasonable con...
متن کاملAdaptive model predictive control of autonomic distributed parallel computations with variable horizons and switching costs
Autonomic computing is a paradigm for building systems capable of adapting their operation when external changes occur, such as workload variations, load surges and changes in the resource availability. The optimal configuration in terms of the number of computing resources assigned to each component must be automatically adjusted to the new environmental conditions. To accomplish the execution...
متن کاملComputationally Efficient Long Horizon Model Predictive Direct Current Control of DFIG Wind Turbines
Model predictive control (MPC) based methods are gaining more and more attention in power converters and electrical drives. Nevertheless, high computational burden of MPC is an obstacle for its application, especially when the prediction horizon increases extends. At the same time, increasing the prediction horizon leads to a superior response. In this paper, a long horizon MPC is proposed to c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Automatic Control
سال: 2019
ISSN: 0018-9286,1558-2523,2334-3303
DOI: 10.1109/tac.2018.2880405